
Subgraph Counting in Data Streams
COMS 6998: Algorithms for Massive Data Final Project

Krish Singal and Yiming Fang

Fall 2023

Abstract

Subgraph counting is a fundamental problem in graph algorithms with direct applications to network
analysis [BHLP11, EM02]. Most progress in recent years has been seen for simpler subgraphs
such as triangles and four-cycles. This work has three main contributions. (1) We survey existing
constant pass streaming algorithms on triangle counting [MSV16, JK21] and some corresponding
lower bounds in the one-pass setting [BOV13,KP17]. (2) We survey an existing four-cycle counting
algorithm [V20]. (3) Finally, we present our results – a novel 3-pass (1±ϵ)-approximation algorithm
for diamond counting in the stream with expected space complexity O(T 1/4 + ϵ−2mT−3/4).

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Previous Results . 2

2 Triangle Counting 3
2.1 A 2-pass Algorithm [MSV16] . 3
2.2 Lower Bounds on One-Pass Algorithms [BOV13, KP17] 5
2.3 Optimal One-pass Algorithm [JK21] . 6

3 Four-Cycle Counting 8
3.1 A 3-pass Algorithm [V20] . 8

4 Diamond Counting – Our Results 11
4.1 A 3-pass Algorithm . 11

1 Introduction

Subgraph counting is of particular interest in the streaming model and has been extensively studied in
recent years. For a fixed subgraph H, the H-subgraph counting problem asks for the total number of
instances ofH (not necessarily vertex-induced) in input graphG = (V,E). The problem has received much
attention in standard settings and has recently been of interest in the streaming model of computation.
In this regime, we aim to achieve expected space complexity that is sublinear in the size of the graph.
For this reason, we aim to approximate subgraph counts up to a (1± ϵ) factor.

1

1.1 Preliminaries

This survey describes results within the context of the insertion-only graph streaming model, wherein a
graph G = (V,E) is received as a stream of edges σm

i=1 in arbitrary order. In particular, this means that
the ordering can be non-adaptively adversarially chosen. Our discussion will also focus on constant-pass
algorithms, which are allowed to replay the stream only a constant number of times.

A general strategy used by [MSV16], [MV20] and [V20] is to construct an estimator by sampling edges
with fixed probability p and returning the number of surviving subgraphs scaled by pk (where k denotes
the size of the subgraph of interest). This is trivially an unbiased estimator and can be shown to give
accurate estimates with high probability. Similarly, one can sample vertices with fixed probability q and
store all its incident edges. Crucially, the space complexity of such algorithms is directly proportional to
the number of edges we sample and store. We will see that many of the algorithms covered in this survey
follow similar guiding ideas.

1.2 Previous Results

Recent work has brought significant advances to the problem under various different parameterizations.
Here, we briefly outline the state of the art.

Problem E[Space Complexity] # Passes Ref

△ Counting O(ϵ−2mn/T) 1 Lecture 3

Õ(ϵ−2m3/2/T) 3 [MSV16]

Õ(ϵ−2m/
√
T) 2 [MSV16]

Õ(ϵ−O(1)m(∆E +
√
∆V)/T) 1 [JK21]

□ Counting Õ(ϵ−2m/T 1/4) 3 [MV20]

Õ(ϵ−2m/T 1/3) 3 [V20]

Table 1: Triangle and 4-cycle counting in arbitrary-order streams

Where T denotes the true number of subgraphs H in G, ∆V denotes the maximum number of triangles
sharing any given vertex, and ∆E denotes the maximum number of triangles sharing any given edge.

Recent work by [CEI+22] also extends this problem to the learning-augmented setting where the algo-
rithm has access to a prediction oracle. The challenge there is to ensure robust algorithmic guarantees
even when the prediction oracle is incorrect.

In this work, we survey the 2-pass and 1-pass triangle counting algorithms from [MSV16] and [JK21]
and 3-pass 4-cycle counting algorithm from [V20]. We also prove the following theorem about our novel
algorithm regarding diamond counting:

Theorem 1 There exists a 3-pass algorithm that returns a (1 ± ϵ) multiplicative approximation to the
number of diamonds in a streamed graph with space complexity

Õ
(
T 1/4 + ϵ−2m/T 3/4

)
and success probability 0.99. Here, T denotes the number of triangles in the graph.

2

2 Triangle Counting

Recent research has brought a number of algorithms for triangle counting in the stream using different
number of passes. We will survey two state-of-the-art algorithms.

2.1 A 2-pass Algorithm [MSV16]

Algorithm 1 2-pass Triangle Counting with Õ(ϵ−2m/
√
T) Space

1: First Pass:
2: Let p = O(ϵ−2 log n/

√
T) be the sampling rate

3: Let Z be a random subset of nodes constructed by including each node w.p. p
4: Let S1 be a random subset of edges constructed by including each edge w.p. p
5: Let S2 be the set of edges incident to nodes in Z
6:

7: Second Pass: on e = (u, v)
8: Let SL

i = {e ∈ Si | oracle(e) = L},∀i ∈ [2]
9: Let SH

i = {e ∈ Si | oracle(e) = H}, ∀i ∈ [2]

10: Let oracle(e) =

{
H if x̃e ≥ p

√
T

L if x̃e < p
√
T
, where x̃e = |{w ∈ Z : u, v ∈ Γ(w)}|

11: if oracle(e) = L then
12: AL = AL + 1

3 |{w | {u,w}, {v, w} ∈ SL
1 }|

13: if oracle(e) = H then
14: AH = AH + x̃1e + x̃2e/2 + x̃3e/3, where
15: x̃1e = |{z ∈ Z : (u, z), (v, z) ∈ SL

2 }|
16: x̃2e = |{z ∈ Z : (u, z) ∈ SL

2 , (v, z) ∈ SH
2 }|+ |{z ∈ Z : (u, z) ∈ SH

2 , (v, z) ∈ SL
2 }|

17: x̃3e = |{z ∈ Z : (u, z), (v, z) ∈ SH
2 }|

18:

19: return T̂ = AL/p
2 +AH/p

Main idea: From a high level, the algorithm spends the first pass constructing a heavy edge oracle and
samples edges with fixed probability. In the second pass, the algorithms counts the number of triangles
formed by each heavy and light edges with the samples (with appropriate scaling). The key insight behind
the algorithm is that the sampling scheme’s space requirement is highly sensitive to the existence of heavy
edges, so classifying edges based on heaviness helps reduce variance.

Definition 1 (Heavy edges): For some constant c ≥ 1, an edge is considered

{
heavy if xe ≥ c

√
T

light if xe <
1
c

√
T

where e = (u, v) and xe = |{w ∈ V (G) : u, v ∈ Γ(w)}| is the number of subgraphs (△) that e is part of.

Lemma 1 For all edges e ∈ E(G), with 1− 1/poly(n) probability:

{
oracle(e) = L =⇒ e is light

oracle(e) = H =⇒ e is heavy

Proof. Since each vertex v ∈ V (G) is sampled into Z independently with probability p, and let x̃e = |{w ∈
Z : u, v ∈ Γ(w)}|. Then we can apply Chernoff bound. For any given e, if e is heavy, then xe ≥ c

√
T , and

Pr[oracle(e) = L] = Pr
[
x̃e < p

√
T
]
≤ e−O(p

√
T) = e−O(ϵ−2 logn) = 1/poly(n)

3

Oracle Set Z

eH

Oracle Set Z

Figure 1: (a) Construction of oracle by sampling into set Z with fixed probability p (b) Heavy edge eH
that forms many triangles with vertices in Z

.

The other side can be proved similarly. By a union bound over all e ∈ E(G), the oracle implies the correct
result with probability 1− 1/poly(n).

Theorem 2 [MSV16] Alg. 1 returns T̂ ∈ (1± ϵ)T using Õ(ϵ−2m/
√
T) space, w.p. ≥ 90%.

Proof. Using the property of the oracle in Lemma 1, we can consider the following cases separately.

• Consider light triangles: Let TL denote the number of triangles formed with only edges from the set
EL = {e ∈ E : oracle(e) = L}. Since each light triangle contains 3 light wedges, one can estimate
TL by 1

3A, where A =
∑

i∈S Ai is the number of light wedges in the stream S. To estimate A, the
algorithm counts all light wedges sampled in SL

1 , and scales the quantity by 1/p2. Therefore, we can
estimate TL with AL/p2 and we analyze the estimator’s expectation and variance. For each light
wedge in the stream, the probability that both edges are sampled is p2, so E[Ai] = p2 and

E[AL] =
1

3p2

∑
i∈S

E[Ai] =
1

3p2

∑
i∈S

p2 =
1

3
A = T

Furthermore, V[Ai] ≤ p2 and COV[Ai, Aj] ≤ E[AiAj] = p3 if the two wedges Wi,Wj share an edge,
and COV[Ai, Aj] = 0 otherwise. So

V[A] =
∑
i∈T

V[Ai] +
∑
i ̸=j

COV[Ai, Aj] ≤ Tp2 +
∑
e∈EL

∑
Wi∩Wj={e}

p3 ≤ Tp2 +O(
√
T)p3

where the last step follows from lightness of the edges. Applying Chebyshev’s Inequality and union
bounding over the failure probability of the oracle gives us AL/p

2 ∈ TL ± ϵT/2 w.h.p.

• Consider heavy triangles: Let TH denote the number of triangles with at least one edge from the
set EH = {e ∈ E : oracle(e) = H}. For each heavy e, let xie denote the number of triangles that
includes e and exactly i heavy edges. Since each triangle with i heavy edges appears in i different
terms, and each edge is sampled independently with probability p, we have

TH =
∑

e:oracle(e)=H

(
x1e + x2e/2 + x3e/3

)
= (1± ϵ)AH/p

with probability ≥ 1− 2e−O(ϵ−2p
√
T) = 1− 1/poly(n) by applying the Chernoff bound.

Union bounding over failure probability in both cases gives us the desired success probability. The
expected space complexity is E[|S1|+ |S2|] = pm+

∑
v pdeg(v) = 3pm = Õ(ϵ−2m/

√
T) as desired.

4

2.2 Lower Bounds on One-Pass Algorithms [BOV13, KP17]

A series of work on approximate triangle counting culminated in a Õ(md
T) space, one-pass algorithm by

[PTTW13]. While substantial progress was made, the line of work hit a fundamental barrier after Ω(m)
space lower bounds were shown for distinguishing between two distributions over triangle-free graphs and
graphs with Ω(m) triangles. We discuss two such constructions here by [BOV13] and [KP17] which
motivate a new parameterization and the one-pass algorithm of [JK21].

[BOV13]’s lower bound is derived via a reduction from the randomized one-way communication com-
plexity of the INDEXn problem. Here, Alice is given a bit-string x of length n and Bob is given an index
ℓ ∈ [n]. Alice must communicate to Bob and Bob must output xℓ with probability ≥ 2/3. In particular,
[CCKM10] shows an Ω(n) lower bound on the communication complexity of INDEXn.

Assume, for the sake of contradiction, that there exists an o(m) space algorithm A that computes a
(1±ϵ) approximate triangle count with constant success probability. It is easy to see that A can then also
distinguish between two distributions on graphs, G1 that has positive mass on triangle-free graphs and
G2 that has positive mass on a graphs with Ω(T) triangles, with constant success probability. We then
construct a one-way communication protocol for INDEXn using o(n) bits and derive a contradiction.

1. Alice first constructs G by creating 2n vertices {ui}2ni=1 and creating an edge (u2i, u2i+1) iff xi = 1

2. Alice runs A on G and communicates A’s memory to Bob

3. Bob then adds n vertices {vj}nj=1 to G and connects u2ℓ and u2ℓ+1 to each of {vj}nj=1

4. Bob then returns the answer of A on G

Notice that G has exactly n triangles if xℓ = 1 and 0 otherwise. Therefore, Bob is correct with the same
constant success probability as A. Furthermore, A uses o(n) space by assumption, so the above protocol
contradicts the Ω(n) lower-bound of [CCKM10]. Because our constructed graph has O(n) edges, we con-
clude an Ω(m) space complexity lower bound to distinguish between triangle-free graphs and those with
Ω(m) triangles in this family of graphs. However, [BOV13]’s above construction of a ”hard-instance”
family of graphs is more of a special case, where all triangles share an edge. This motivated a new param-
eter, ∆E , that counts the maximum number of triangles sharing an edge. Reparameterizing using ∆E ,
we see that [BOV13]’s construction implies an Ω(m∆E

T) space lower bound.

The lower bound by [KP17] is similarly derived via a reduction from the randomized one-way commu-
nication complexity of the Boolean Hidden Matching problem [GKK+07]. We skip the details of the
proof here for the sake of brevity, but we note that the construction involves a distribution of graphs with
Ω(m) triangles sharing a single vertex, similar to [BOV13]’s construction in which every triangle shares
an edge. This motivated a new parameter, ∆V , that counts the maximum number of triangles sharing a

vertex. Reparameterizing using ∆V , it turns out that [KP17]’s construction implies an Ω(m
√
∆V
T) space

lower bound.

Because one does not strictly dominate the other asymptotically, [BOV13, KP17] give a combined lower
bound of Ω(mT (∆E +

√
∆V)).

5

2.3 Optimal One-pass Algorithm [JK21]

The lower bounds from section 2.2 were met with a matching upper bound by [JK21]. It is important to
note that access to parameters T , ∆E , ∆V makes computation redundant. The algorithm must allocate
sufficient space prior to receiving any information regarding graph G, so we assume that the algorithm has
access to constant factor approximations of the quantities in question. Under these new parameterizations,

[JK21] designs an optimal one-pass algorithm with space complexity O
(
m
T

(
∆E +

√
∆V

)
log n

log 1
δ

ϵ2

)
that

matches the lower bounds of [KP17] and [BOV13] up to poly-logarithmic factors.

We briefly outline the algorithm and its analysis. The key insight of [JK21] is to sample vertices with
fixed probability p and edges with fixed probability q. We choose to store edges adaptively in Ê and
increment our triangle estimator when an edge update uw closes an existing wedge {uv, vw} stored in Ê.

Algorithm 2 One-pass Triangle Counting with O
(
m
T

(
∆E +

√
∆V

)
log n

log 1
δ

ϵ2

)
Space

1: Ê ← ∅, T̂ ← 0
2: for edge uw in stream do
3: for v ∈ V do
4: if HV (v) = 1 and vu, vw ∈ Ê then
5: T̂ ← T̂ + 1

6: if HE(uw)(HV (u) +HV (w)) ≥ 1 then
7: Ê ← Ê ∪ {uw}
8: return T̂

pq2

Where HV : V → {0, 1} is a pairwise-independent hash family such that Eh∈HV
[h(v)] = p and HE : E →

{0, 1} is a fully-independent hash function such that Eh∈HE
[h(e)] = q.

The details of the algorithm will help us determine the correct settings for p and 1 respectively. In par-
ticular, note that there are at least T

∆V
many vertices involved in some triangle. So to ensure we sample a

non-zero number of these ”triangle-bearing” vertices in expectation, we must set p ≥ ∆V
T . Similarly, there

are at least T
∆E

many ”triangle-bearing” edges. Our algorithm samples edges with probability ≤ 2pq, so

we must set pq ≥ ∆E
T . Lastly, triangle is preserved and contributes to the estimator with probability pq2,

so pq2 ≥ 1
T . Solving for q using these constraints, we get that q = max{∆E

∆V
, 1√

∆V
}. These settings of p

and q are sufficient to achieve optimality.

We now show correctness of the algorithm.

Lemma 2 Estimator T̂ is unbiased. That is, E[T̂] = T

Proof. Notice that

T̂ =
1

pq2

∑
t=(uv,vw,uw)∈G

Xt

where the edges of triangle t arrive in order (uv, vw, uw) (to mitigate triple-counting) and Xt is the

6

indicator random variable denoting whether triangle t is preserved via the sampling or not. Therefore,

E[T̂] = E

 1

pq2

∑
t=(uv,vw,uw)∈G

Xt

 =
1

pq2

∑
t=(uv,vw,uw)∈G

E[Xt]

=
1

pq2

∑
t=(uv,vw,uw)∈G

Pr[HE(vu) = 1] Pr[HE(vw) = 1] Pr[HV (v) = 1]

=
∑

t=(uv,vw,uw)∈G

1

= T

where we have used the fact that Pr[Xt = 1] = Pr[HE(vu) = 1] Pr[HE(vw) = 1] Pr[HV (v) = 1] since vertex
v, edge vu, and edge vw must be sampled to preserve the triangle.

Lemma 3 V[T̂] ≤ T
pq2

+ T∆E
pq + T∆V

p ≤ 3T 2

Proof. We compute E[T̂ 2] case by case. When

E[T̂ 2] =
1

p2q4

∑
(uv,vw,uw),(xy,yz,xz)∈G

E[Xt1Xt2]

1. When (uv, vw, uw) = (xy, yz, xz), the two triangles are the same. Therefore, E[Xt1Xt2] = E[X2
t] =

Pr[Xt = 1] = pq2. There are T such pairs of triples.

2. When |{uv, vw} ∩ {xy, yz}| = 1, it follows that v = y. Therefore, E[Xt1Xt2] = pq3 since vertex v
must be sampled and all 3 unique edges in the set {uv, vw, xy, yz} must be sampled. Because each
triangle can share an edge with at most ∆E others, there are at most T∆E many such pairs of
triples.

3. When |{uv, vw} ∩ {xy, yz}| = 0 but u = x, E[Xt1Xt2] = pq4 since vertex v must be sampled and
all 4 unique edges in the set {uv, vw, xy, yz} must be sampled. Because each triangle can share a
vertex with at most ∆V others, there are at most T∆V many such pairs of triples.

4. Lastly, when {u, v} ∩ {x, y} = ∅, E[Xt1Xt2] = p2q4 since vertices v and y must be sampled and all
4 unique edges in the set {uv, vw, xy, yz} must be sampled. There are at most T 2 many pairs of
triangles, and therefore T 2 many such pairs of triples.

These cases are exhaustive and therefore give

E[T̂ 2] ≤ 1

p2q4
(pq2T + pq3T∆E + pq4T∆V + p2q4T 2)

= T/pq2 + T∆E/pq + T∆V /p+ T 2

From lemma 2, we then get

V[T̂] = E[T̂ 2]− E[T̂]2

≤ T/pq2 + T∆E/pq + T∆V /p+ T 2 − T 2

≤ T/

(
∆V

T
· 1

∆V

)
+ T∆E/

(
∆V

T
· ∆E

∆V

)
+ T/

(
∆V

T

)
= 3T 2

7

Theorem 3 There exists an algorithm that returns T̂ ∈ (1 ± ϵ)T with probability 1 − δ and uses

O
(
m
T

(
∆E +

√
∆V

)
log n

log 1
δ

ϵ2

)
space in expectation

Proof. By our settings of p and q, algorithm 2 returns an unbiased estimator T̂ with variance at most
3T 2. A new estimator T̂ ′ constructed by independently running algorithm 2 6

ϵ2
times and taking the

mean is similarly unbiased and has variance V[T̂ ′] = 6
ϵ2
· ϵ4

62
V[T̂] ≤ ϵ2T 2

2 . By Chebyshev’s inequality,

T̂ ′ /∈ (1 ± ϵ)T with probability ≤ 1
2 . Finally, we construct estimator T̂ ′′ by independently running and

computing T̂ ′ O(log
(
1
δ

)
) times and taking the median. Estimator T̂ ′′ is then /∈ (1±ϵ) with probability 1−δ.

Notice that algorithm 2 stores an edge uv if HE(uv)·(HV (u)+HV (v)) ≥ 1 which happens with probability
≤ 2pq. Each edge takes log n bits to store. Furthermore, has functions HV and HE can be constructed
and stored in O(log n) bits of space [CW79]. Therefore, algorithm 2 has expected space complexity

O(mpq log n). Thus, computing T̂ ′′ takes O(mpq log n
log 1

δ
ϵ2

) = O
(
m
T

(
∆E +

√
∆V

)
log n

log 1
δ

ϵ2

)
space in

expectation.

3 Four-Cycle Counting

3.1 A 3-pass Algorithm [V20]

Algorithm 3 3-pass Four-Cycle Counting with Õ(ϵ−2m/T 1/3) Space

1: First Pass:
2: Let p = Õ(ϵ−2/T 1/3) be the sampling rate
3: Let SE be a random subset of edges constructed by including each edge w.p. p
4: Let ZV , QV be random subsets of nodes constructed by including each node w.p. p
5: Collect incident edges of ZV , QV , call then ZE , QE

6:

7: After First Pass:
8: For each pair (u, v), let q(u, v) be the number of wedges with center in QV and endpoints u, v
9: Let Cuv be a crystal with endpoints in u, v, it is called heavy if q(u, v) ≥ pT 1/3

10: A wedge is called heavy if it belongs to a heavy crystal
11: Let t̂(Cuv) =

(
q(u,v)/p

2

)
12: Let T̂H =

∑
heavy Cuv

t̂(Cuv)
13:

14: Second Pass: For each e in the stream:
15: if e forms a 4-cycle with 3 edges in SE without heavy wedges then
16: Store (e, τ)

17:

18: Third Pass:
19: Let A0 be the number of (e, τ) containing no heavy edges
20: Let A1 be the number of (e, τ) where e is heavy and the other edges are light
21: T̂L = A0/(4p

3) +A1/p
3

22:

23: return T̂ = T̂H + T̂L

8

Main idea: The high-level approach towards 4-cycle counting is to sample a set of edges in one pass,
and in separate pass try to form 4-cycles using the incoming edge and 3 edges from the sampled set. The
challenge in this approach is that if an edge or wedge is involved in many 4-cycles, then the variance
of the estimator becomes large. To address this problem, we adopt an approach similar to the triangle
counting, by considering heavy edges and wedges separately from the rest of edges.

• For heavy wedges, we use the samples QV , QE to estimate the number of 4-cycles in which wedge
w is involved. A graph structure that helps intuiting this situation is the crystal graph in Fig. 2,
which contains k wedges that share the same endpoints u, v. It is not hard to see that each k-crystal
contributes

(
k
2

)
many 4-cycles, which is significant. Therefore, if we estimate a crystal to be heavy,

we add its expected contribution to the overall count.

• For heavy edges, we build an oracle using samples ZV , ZE that estimate how many 4-cycles in which
edge e is involved. It can be shown that this oracle can be constructed satisfying Def. 1. Using this
oracle, we consider 4-cycles that contains no heavy wedge and at most one heavy edge. This gives
an accurate estimate since the number of 4-cycles that contains no heavy wedges and more than
one heavy edges is at most ϵT/6 [MV20].

u v

w1

w2

w3

...

wk

Figure 2: Crystal graph Cuv with weight k

Lemma 4 T̂H ∈ (1± ϵ/4)TH w.h.p.

Proof. We first show that

• if q(u, v) ≥ pT 1/3, then |Cuv| ≥ 1
2T

1/3

• if q(u, v) ≤ pT 1/3, then |Cuv| ≤ 2T 1/3

where |Cuv| denotes the number of wedges in Cuv. By applying the Chernoff bound, if |Cuv| ≥ 1
2T

1/3,
then

Pr
[
q(u, v) ≤ pT 1/3

]
≤ e−2pT 1/3

= e−O(logn) = 1/poly(n)

The other side follows similarly. Now we want to estimate how far q(u, v)/p deviates from t(Cuv). Again,
by Chernoff bound,

Pr[|q(u, v)− p|Cuv| ≥ (ϵ/20)p|Cuv|] ≤ 2e−ϵ2p|Cuv |/1200 ≤ 1/poly(n)

Since (
(1± ϵ/20)|Cuv|

2

)
∈ (1± ϵ/4)

(
|Cuv|
2

)
9

we have t̂(Cuv) ∈ (1± ϵ/4)
(|Cuv |

2

)
.

Lastly, we consider the possibility that a 4-cycle is included in two heavy crystals, which causes double
counting. Since each heavy crystal contains Ω(T 2/3 4-cycles the number of heavy crystals is at most
O(T 1/3). Two distinct 4-cycles can belong to at most two crystals, so the maximal double counting is
T 2/3 ≤ (ϵ/4)T . Thus, we can obtain the desired accuracy by union bounding all heavy crystals.

Lemma 5 T̂L ∈ (1± ϵ/2)TL w.h.p.

Proof. Let Ti be the number of 4-cycles in G with i heavy edges. Let T̂0 = A0/(4p
3), T̂1 = A1/p

3. It is
immediate that E[T̂0] = T0 and E[T̂1] = T1.

We want to use Chebyshev’s bound to show that

Pr
[
|T̂0 − T0| ≤ (ϵ/4)T

]
≤ 1/16

It suffices to show that V[T̂0] ≤ ϵ2T 2/256. Let H0 denote the set of 3-paths that contribute to T0. Let
Xq be indicator variable denoting whether all 3 edges of the 3-path q ∈ H0 are sampled.

V[T̂0] = V

 1

4p3

∑
q∈H0

Xq


≤ 1

16p6

∑
q∈H0

V[Xq] +
∑

q,t∈H0:q ̸=t,q∩t̸=∅

COV[XqXt]


≤ 1

16p6

∑
q∈H0

V[Xq] +
∑

q,t∈H0:q ̸=t,q∩t̸=∅

E[XqXt]


≤ 1

16p6

∑
q∈H0

p3 +
∑
q∈H0

∑
t∈H0:|q∩t|=1

p5 +
∑
q∈H0

∑
t∈H0:|q∩t|=2

p4


≤ 1

16p6

(
|H0|p3 + |H0| · cT 2/3p5 + |H0| · cT 1/3p4

)
≤ T/4p3 + cT 2/3/4p+ cT 1/3/4p2

≤ ϵ2T 2/256

which in essence analyzes ways in which 3-paths intersect with each other (at one edge and at two edges).

Pr
[
|T̂1 − T1| ≤ (ϵ/4)T

]
≤ 1/16 can be proved similarly.

Theorem 4 [V20] Alg. 3 returns T̂ ∈ (1± ϵ)T using Õ(ϵ−2m/T 1/3) space, w.p. ≥ 90%.

Proof. Combining Lemma 4 and 5, and the fact that the number of 4-cycles that contains no heavy
wedges and more than one heavy edges is at most ϵT/6 [MV20], we can conclude that the accuracy of
the algorithm is as claimed.

The space complexity follows from the fact that sets SE , QE , ZE all have the expected size mp =
O(ϵ−2m log n/T 1/3). The expected number of sampled cycles from the second pass is 4T/p3 = O(log n).
Therefore, the total expected space complexity is same as claimed.

10

4 Diamond Counting – Our Results

We present a novel 3-pass streaming algorithm for approximately counting diamonds, a subgraph with the
structure ◁▷ (we remark that the presented algorithm, theorems, and results are a work in progress and
may potentially have bugs). The diamond exhibits many properties that can be exploited by triangle/4-
cycle counting techniques that we have seen in the literature. Because the diamond differs only by one
edge from the 4-clique, our techniques for counting diamonds may provide insights for counting 4-cliques,
which is a problem of great practical importance.

4.1 A 3-pass Algorithm

Algorithm 4 3-pass Diamond Counting with Õ
(
T 1/4 + ϵ−2m/T 3/4

)
Space

1: Let p = O(ϵ−2 log n/T 3/4) be the sampling rate
2: EL = ∅, VL = ∅, EH = ∅, ES = ∅, D̂L = 0, D̂H = 0, T̂H = [0, ..., 0],Θ = T 3/4

3:

4: First Pass: Build heavy edge oracle with threshold Θ.
5:

6: Second Pass: on e = (u, v)
7: if oracle(e) = L then
8: With probability p, do
9: EL ← EL ∪ {e}, VL ← VL ∪ {u, v}, D̂L(e) = 0

10: if oracle(e) = H then
11: EH ← EH ∪ {e}, D̂H(e) = 0

12:

13: Third Pass: on e = (u, v)
14: if u ∈ VL or v ∈ VL then
15: ES ← ES ∪ {e}
16: for each eL ∈ EL, eH ∈ EH do
17: if (eL, eH , e) is a triangle then
18: T̂H(eH)← T̂H(eH) + 1/p

19: for each eH1 , eH2 ,∈ EH do
20: if (eH1 , eH2 , e) is a triangle then
21: T̂H(eH1)← T̂H(eH1) + 1
22: T̂H(eH2)← T̂H(eH2) + 1

23:

24: After Pass:
25: for eL = (u1, u2) ∈ EL do
26: for v1, v2 ∈ V do
27: if (v1, u1), (v1, u2), (v2, u1), (v2, u2) ∈ ES then
28: D̂L(eL)← D̂L(eL) + 1

29: D̂L ← 1
p

∑
eL∈EL

D̂L(eL)

30: D̂H ←
∑

eH∈EH

(
T̂H(eH)

2

)
31: return D̂L + D̂H

11

Before analyzing the algorithm, we provide some intuition. First, we observe that a diamond contains
a middle edge that is incident to two triangles. We define the lotus structure based in (i, j) (Fig. 3)
where the base edge (i, j) is incident to k triangles (petals). The key insight is that a k-petal lotus
graph contributes

(
k
2

)
-many diamonds, which is similar to the contribution of crystal graphs in the 4-cycle

counting case. Therefore, to count diamonds in G, we have to approximate the number of petals based
in every e ∈ E(G). Similar to triangle/4-cycle counting, we will consider heavy/light edges separately in
order to reduce variance introduced by dropping heavy edges while sampling. Similar to many triangle
and four-cycle counting algorithms, we build a heavy edge oracle in the first pass.

i j

p1 p2 p3
· · ·

pk

Figure 3: Lotus graph with k petals

The algorithm has three passes. In the first pass, we build a heavy edge oracle as before by sampling
edges. In the second pass, we categorize heavy and light edges using the oracle, collect all heavy ones
into EH , and sample the light edges with a fixed rate into EL. In the third pass, we collect all the edges
incident to the light edges in EL, and then try to make triangles using the new edge and two edges from
EL and EH . For each heavy edge eH ∈ EH , we keep count of how many triangles are formed; in other
words, we approximate how many petals are in the lotus based in eH . After all passes, we iterate through
all eL ∈ EL and all pairs of vertices, and count how many diamonds based in eL can be formed. Finally,
we output an estimator that re-weights our counts according to p.

We first show that the our settings of p = O(ϵ−2 log n/T 3/4) and Θ = T 3/4 give the same oracle guarantees
as that of lemma 1.

Proof. Sample each vertex v ∈ V (G) into set Z independently with probability p, and let x̃e = |{w ∈ Z :
u, v ∈ Γ(w)}|, and let xe be the true number of triangles that e is part of. Then, we can apply Chernoff
bound. For any given e, if e is heavy, then xe ≥ cT 3/4, and

Pr[oracle(e) = L] = Pr
[
x̃e < pT 3/4

]
≤ e−O(pT 3/4) = e−O(ϵ−2 logn) = n−O(ϵ−2)

The other side can be proved similarly. By a union bound over all e ∈ E(G), the oracle implies the correct
result with probability 1− 1/poly(n).

For the remainder of the proof, we will assume that each edge is correctly labeled by the oracle and a
union bound over each edge. We now proceed to prove that the heavy and light diamond count estimators
concentrate well around their true values. Let T (e) denote the number of triangles containing edge e. Let
eH and eL denote a sampled edge e ∈ E that is labeled heavy and light by the oracle respectively.

Lemma 6 D̂H ∈ (1± ϵ/4)DH with probability 0.99

Proof. We claim that it suffices to show that T̂H(e) ∈ (1± ϵ
20)T (e) for all e ∈ E considered heavy by the

oracle. This is because (
(1 + ϵ

20)T (e)

2

)
≤
(
1 +

ϵ

4

)(T (e)
2

)
=
(
1 +

ϵ

4

)
D(e)

12

and (
(1− ϵ

20)T (e)

2

)
≥
(
1− ϵ

4

)(T (e)
2

)
=
(
1 +

ϵ

4

)
D(e)

From algorithm 4,

T̂H(eH) =
∑
eH∈E

XeH1
,eH2

+
∑
eL∈E

XeH ,eL

where Xe1,e2 is the indicator random variable that takes value 1 if the unique triangle containing e1 and
e2 is preserved by sampling. Because every edge is correctly labeled by the oracle and we store all heavy
edges, the first term in the summation exactly counts the number of heavy-heavy triangles that eH is
a part of. We now show that the second term concentrates well around the true number of heavy-light
triangles that eH is a part of, which we denote as TL(eH).
We split the analysis into two cases

1. First, suppose that 1
p

∑
eL∈E XeH ,eL ≥ Θ. One potential issue in the algorithm is that triangles

containing one heavy edge and two light edges can be double-counted if both light edges are sampled.
We first show that each double count changes the estimator only by a small fraction, then proceed
to show concentration of the second term.

Each time we double count a triangle with eH , we would have to increment T̂H(eH) by 1/p twice,
and we double counted one triangle. This means that there is at most a 1

2/p = p/2 = O(1/T 3/4)

fraction of T̂H(eH) that is caused by double count. As long as T̂H(eH) < T (which must be true if
T̂H(eH) is an accurate estimator), then the amount of contribution of double counting is at most
T · O(1/T 3/4) = T 1/4 ≤ ϵTH(e). Therefore, we can afford to neglect the contribution of double
counts, and assume that all preserved triangles are not double counted.

Notice that the estimator is unbiased:

E

1
p

∑
eL∈E

XeH ,eL

 =
1

p

∑
eL∈E

E[XeH ,eL] = |TL(eH)|

Since Pr[XeH ,eL = 1] = p, the probability that eL is sampled. Here, TL(eH) is the total number of
triangles with heavy-light wedges containing eH . By the Chernoff bound,

Pr

1
p

∑
eL∈EL

Xeh,eL /∈ (1± ϵ)
∑
eL∈E

XeH ,eL

 ≤ e−ϵ2·logn/ϵ2 =
1

poly(n)

2. Otherwise, suppose that 1
p

∑
eL∈E XeH ,eL <= o(Θ). In this case, T̂H(eH) is asymptotically domi-

nated by the first term. Because eH is heavy, the first term is ≥ Θ. Because the first term is an
exact count, we are done.

Lemma 7 D̂L ∈ (1± ϵ/2)DL with probability 0.99

Proof. Let D be the set of all diamonds, and D = |D|.
Let D(e) be the number of diamonds with base e.

13

Let T (e) be the number of triangles containing e.
Let E(t) denote the number of edges that are part of exactly t triangles. Note that since each triangle
has 3 edges,

∑
t≥1E(t) ≤ 3T .

Let Xe be the indicator function denoting whether edge e is sampled.
Let Xd be the indicator function denoting whether diamond d is sampled.
We first show that the estimator is unbiased:

E[D̂L] =
∑

e∈E:e light

E[Xe]D(e) = p
∑

e∈E:e light

D(e) = pDL

Then, we show that we can bound the variance to V(D̂L) ≤ ϵ2D2 in order to apply Chebyshev’s bound:

V[D̂L] = V

1
p

∑
eL∈EL

D̂L(eL)



≤ 1

p2

∑
d∈D

V[Xd] +
∑

d1,d2∈D
d1 ̸=d2,d1∩d2 ̸=∅

COV[Xd1 , Xd2]



≤ 1

p2

∑
d∈D

E[X2
d] +

∑
d1,d2∈D

d1 ̸=d2,d1∩d2 ̸=∅

E[Xd1 , Xd2]



≤ 1

p2

pD +
∑

d1,d2∈D
|d1∩d2|=1

E[Xd1 , Xd2]


≤ 1

p2

pD + p
∑

e:T (e)≤Θ

T (e)4

 (1)

≤ 1

p2

(
pD + p

Θ∑
t=1

t4E(t)

)
(2)

≤ 1

p2

(
pD + pΘ3

Θ∑
t=1

tE(t)

)

≤ 1

p2
(
pD + 3pΘ3T

)
(3)

≤ D/p+ 3Θ3T/p

where (1) follows by considering that at if edge e is involved in T (e) triangles, then the number of ways
that e can be shared among diamonds is upper bounded by

(
T (e)
4

)
≤ T (e)4. (2) follows by summing over

all values of T (e) instead of over e. (3) follows from the fact
∑

t≥1E(t) ≤ 3T .

By noting that D ≤ T 2, we can set Θ = O(T 3/4), p = Õ(ϵ−2/T 3/4), which gives us V(D̂L) ≤ ϵ2D2, which
allows us to apply Chebyshev’s bound over our estimator.

14

Theorem 1 (restated) There exists a 3-pass algorithm that returns a (1±ϵ) multiplicative approximation
to the number of diamonds in a streamed graph with space complexity

Õ
(
T 1/4 + ϵ−2m/T 3/4

)
and success probability 0.99. Here, T denotes the number of triangles in the graph.

Proof. The accuracy follows from the combination of Lemma 6 and 7. The expected space complexity
follows from the fact that the sampled set ES has expected size mp = O(ϵ−2m log n/T 3/4), and the
expected number of heavy edges in EH is upper bounded by T 1/4 by our definition of heaviness. Therefore,
the overall space complexity is as claimed.

References

[BHLP11] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips. Tol-
erating the community detection resolution limit with edge weighting. Phys. Rev. E, 83:056119,
May 2011.

[CCKM10] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and Andrew McGregor. Infor-
mation cost tradeoffs for augmented index and streaming language recognition. In Proceedings
of the 51st FOCS, pages 387–396. IEEE, 2010.

[CEI+22] Chen, Justin Y., et al. “Triangle and four cycle counting with predictions in graph streams.”
arXiv preprint arXiv:2203.09572 (2022).

[CW79] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. Journal of com-
puter and system sciences, 18(2):143–154, 1979.

[EM02] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers
in the world wide web. Proceedings of the National Academy of Sciences, 99(9):5825–5829,
2002.

[GKK+07] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald De Wolf. Exponen-
tial separations for one-way quantum communication complexity, with applications to cryptog-
raphy. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 516–525. ACM, 2007.

[JK21] Jayaram, Rajesh, and John Kallaugher. ”An optimal algorithm for triangle counting in the
stream.” arXiv preprint arXiv:2105.01785 (2021).

[MSV16] McGregor, Andrew, Sofya Vorotnikova, and Hoa T. Vu. ”Better algorithms for counting trian-
gles in data streams.” Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. 2016.

[MV20] McGregor, Andrew, and Sofya Vorotnikova. ”Triangle and four cycle counting in the data
stream model.” Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems. 2020.

[V20] Vorotnikova, Sofya. ”Improved 3-pass algorithm for counting 4-cycles in arbitrary order stream-
ing.” arXiv preprint arXiv:2007.13466 (2020).

15

	Introduction
	Preliminaries
	Previous Results

	Triangle Counting
	A 2-pass Algorithm MSV16
	Lower Bounds on One-Pass Algorithms BOV13, KP17
	Optimal One-pass Algorithm JK21

	Four-Cycle Counting
	A 3-pass Algorithm V20

	Diamond Counting – Our Results
	A 3-pass Algorithm

